A Role for Crustal Assimilation in the Formation of Copper-Rich Reservoirs at the Base of Continental Arcs

Author:

Tassara Santiago1,Ague Jay J.1

Affiliation:

1. Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06520-8109, USA

Abstract

Abstract Understanding the behavior of chalcophile elements during the evolution of arc magmas is critical to refining models for the formation and distribution of porphyry copper deposits used in mineral exploration. Because magmas in continental arcs undergo copper depletion during their early differentiation, a widely held hypothesis posits that the removed copper is locked at the base of the crust in copper-rich cumulates that form due to early sulfide saturation. Testing this hypothesis requires direct evidence for such copper-rich reservoirs and a comprehensive understanding of the mechanisms driving sulfide saturation. Interaction between oxidized magmas and reducing crustal material in island arcs has been shown to be an efficient process causing sulfide saturation. However, the extent to which crustal assimilation impacts the flux of chalcophile elements during magmatism in thick continental arcs remains to be established. Here, we provide a deep perspective into these problems by studying a suite of subarc cumulate rocks from the Acadian orogen, New England (USA). These cumulates record the imprint of subduction zone magmatism and represent the residues left behind during the genesis of intermediate to evolved Acadian magmas (ca. 410 Ma). We find that the most primitive Acadian cumulates are enriched in copper (up to ~730 µg g–1) hosted by sulfide phases, providing direct evidence for the formation of lower crustal copper-rich reservoirs. The Acadian cumulates reveal a wide range of δ34S values, from –4.9‰ in the ultramafic rocks to 8‰ in the most evolved mafic rocks. The negative δ34S values observed in the most primitive and copper-rich cumulates (avg –3‰) reflect the assimilation of isotopically light sulfur from surrounding sulfidic and graphite-bearing metasedimentary rocks (δ34S of –19 to –12‰), whereas the more evolved cumulates with positive δ34S signatures may have formed from different magma batches that experienced less sediment assimilation. The assimilation of these reducing metasedimentary rocks caused a critical drop in oxygen fugacity (~DFMQ –2.5 to –1.9; FMQ = fayalite-quartz-magnetite buffer) in the evolving magmas, ultimately leading to extensive sulfide saturation and the consequent formation of copper-rich subarc cumulates. Assimilation-driven sulfide saturation may be a common process at the root of thickened arc crusts that triggers the formation of lower crustal copper-rich reservoirs, which play a pivotal role in the fate of copper during arc magmatism. Thus, deeply buried reducing metasedimentary crustal material at the base of continental arcs can act as a barrier to the magmatic flux of chalcophile elements and may play a crucial role in the genesis and distribution of porphyry copper deposits.

Publisher

Society of Economic Geologists, Inc.

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3