Evolution of High-Level Magmatic-Hydrothermal Systems: New Insights from Ore Paragenesis of the Veladero High-Sulfidation Epithermal Au-Ag Deposit, El Indio-Pascua Belt, Argentina

Author:

Holley Elizabeth A.1,Monecke Thomas2,Bissig Thomas3,Reynolds T. James4

Affiliation:

1. Department of Mining Engineering, Colorado School of Mines, 1600 Illinois Street, Golden, Colorado 80401

2. Department of Geology and Geological Engineering, Colorado School of Mines, 1516 Illinois Street, Golden, Colorado 80401

3. Mineral Deposit Research Unit, Department of Earth and Ocean Sciences, University of British Columbia, 2020–2207 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4

4. FLUID INC., 1401 Wewatta St. #PH3, Denver, Colorado 80202

Abstract

Abstract The world-class Veladero high-sulfidation epithermal Au-Ag deposit is located in the Andean cordillera of Argentina near the northern end of the El Indio-Pascua metallogenic belt. The deposit comprises two nearly coalescing subhorizontal orebodies that are centered on an extensive zone of intense hydrothermal alteration. Intensely altered volcanic rocks are composed of fine-grained groundmass quartz that formed as a result of extreme acid leaching. These quartz grains contain ubiquitous rutile inclusions as well as healed microfractures of vapor-filled inclusions that record magmatic vapor streaming through the Miocene volcanic host succession. Condensation of the magmatic vapor into ambient groundwater generated the highly acidic waters responsible for the alteration. Alunite is present in the fine-grained groundmass quartz and fills vugs in the altered rocks. Stable isotope data indicate that the alunite formed through the disproportionation of SO2 in the condensed magmatic vapor. The fine-grained groundmass quartz is crosscut by later fracture-controlled euhedral quartz that is texturally associated with ore minerals. The euhedral quartz crystals show oscillatory growth zoning and contain rare primary fluid inclusions suggesting that quartz formation occurred at ~200°C from a moderately saline (<5 wt % NaCl equiv) liquid-phase hydrothermal fluid. High-fineness native Au grains are hosted in euhedral quartzlined void spaces and along fractures. In addition to native Au, vugs and fractures in the silicified volcanic rocks host Fe oxide/hydroxide and jarosite that are interpreted to represent the oxidation products of hypogene sulfide minerals that formed during and after the late stages of quartz formation. Results of previous jarosite dating suggest that pervasive oxidation of the orebody commenced during the waning stages of the hydrothermal activity or immediately thereafter. Oxidation of the orebody continued in the supergene environment for at least 3 m.y. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) showed that jarosite, which formed as a result of the oxidation of the orebody, is the principal host for Ag in Veladero ore, explaining the low (ca. 10%) Ag recovery from the oxide ore. The Veladero high-sulfidation epithermal deposit is interpreted to have formed in the shallow part of a magmatic-hydrothermal system. Early alteration related to magmatic vapor discharge was followed by later mineralization from liquid-phase hydrothermal fluids under reduced and slightly acidic to near-neutral conditions. This change from early vapor-dominated to later liquid-dominated magmatic-hydrothermal fluid flow was key in formation of the deposit.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3