Petrogenesis of Scheelite-Bearing Albitite as an Indicator for the Formation of a World-Class Scheelite Skarn Deposit: A Case Study of the Zhuxi Tungsten Deposit

Author:

Song Shiwei1,Mao Jingwen1,Xie Guiqing1,Jian Wei1,Chen Guohua2,Rao Jianfeng2,Ouyang Yongpeng2

Affiliation:

1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 912 Party of Jiangxi Bureau of Geology and Mineral Exploration, Yingtan 335001, China

Abstract

Abstract Scheelite-bearing albitite is present in the form of rare, highly fractionated felsic dikes in the world-class Zhuxi tungsten deposit. Morphologically, the Zhuxi albitite forms individual dikes with thicknesses from 0.01 to 5.1 m in the orebodies. Additionally, the Zhuxi albitite is characterized by high sodium concentrations (Na2O = 6.08–8.04 wt %), low silicon (SiO2 = 56.81–62.56 wt %) and potassium concentrations (K2O = 1.44–2.62 wt %), and increasing P2O5 (0.1–0.7 wt %), Y (2.72–8.62 ppm), and rare earth element (8.28–28.89 ppm) concentrations from the tops to the bottoms of the dikes, which are controlled by the heterogeneous distribution of apatite grains in the albitite. The trace element geochemical characteristics and Sr-Nd isotope compositions of the albitite and the geochemistry of plagioclase, muscovite, apatite, and scheelite that formed in both the albitite and ore-related (altered) granites strongly suggest a genetic relationship between the two rocks. Given our new data and previous experimental data, as well as natural examples from around the world, we propose that the Zhuxi albitite is the product of a silicate-poor, H2O-rich melt that formed by melt–melt-liquid immiscibility processes in an extremely fractionated residual magma. A deep-seated (>3 kbar) granitic magma reservoir was directly related to the formation of these rare scheelite-bearing albitite dikes. Albitite dikes are the product of extreme fractionation of a granitic magma, and W is highly incompatible during magma evolution regardless of oxygen fugacity; therefore, intense tungsten mineralization development within albitite dikes should serve as an important criterion for judging the tungsten metallogenic potential.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3