Chemical Variations in Hydrothermal White Mica Across the Highland Valley Porphyry Cu-Mo District, British Columbia, Canada

Author:

Alva-Jimenez Tatiana1,Tosdal Richard M.1,Dilles John H.2,Dipple Gregory1,Kent Adam J.R.2,Halley Scott3

Affiliation:

1. Mineral Deposit Research Unit, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

2. College of Earth, Atmospheric and Ocean Science, Oregon State University, Corvallis, Oregon 97331, USA

3. Mineral Mapping Party Ltd, 109 Joyce Street, Hawley Beach, Tasmania 7307, Australia

Abstract

Abstract Hydrothermal white mica in the Highland Valley district, British Columbia, is present in high-temperature alteration assemblages in early halo veins and in intermediate-temperature sericitic alteration assemblages in D-type veins. Pale-gray white micas characterize early halo veins in the Valley and Bethsaida zone porphyry Cu-Mo deposits, whereas pale-green white micas form texturally similar vein halos along the margin of the Valley deposit and at the Alwin vein. White micas in the Bethlehem porphyry Cu-Mo deposit form part of a sericitic alteration assemblage associated with D-type veins that overprinted K-silicate–altered rocks. Cation compositions in white micas indicate phengitic compositions trending toward aluminoceladonite. Pale-gray phengitic white micas intergrown with bornite-chalcopyrite-molybdenite contain elevated Na, indicating higher formation temperatures than those that characterize phengitic white micas formed during hydrolytic alteration. Bethlehem phengitic white micas have cation compositions similar to those of pale-green phengitic white micas at the Valley deposit margin, Bethsaida zone margin, and the Alwin vein. The Al-OH absorption wavelengths in pale-gray phengitic white micas are shorter than in pale-green phengitic white mica or phengitic white mica in the sericitic assemblage. In the phengitic white micas, alkali elements substituting in the interlayered site are positively correlated, whereas higher-valence elements substituting into the octahedral site show a greater variability. The data confirms that hydrothermal white-mica chemistry varies between paragenetic stages of a porphyry Cu deposit and between multiple porphyry deposits in a district.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3