Constraints on the Genesis of Cobalt Deposits: Part I. Theoretical Considerations

Author:

Williams-Jones A. E.1,Vasyukova O. V.1

Affiliation:

1. Department of Earth and Planetary Sciences, McGill University, 3450 University Street Montréal, Québec H3A 0E8, Canada

Abstract

Abstract Cobalt is in high demand because of the key role that cobalt-lithium-ion batteries are playing in addressing the issue of global warming, particularly in facilitating the transition from the internal combustion engine to electrically driven vehicles. Here, we review the properties of cobalt and the history of its discovery, briefly describe its mineralogy, and explore the processes that concentrate it to potentially exploitable levels. Economic cobalt deposits owe their origin to the compatible nature of Co2+, its concentration in the mantle in olivine, and its release, after high degrees of partial melting, to komatiitic and (to a lesser extent) basaltic magmas. Primary magmatic deposits, in which Co is subordinate to Ni, develop through the separation of immiscible sulfide liquids from mafic and ultramafic magmas and the very strong partitioning of these metals into the sulfide liquid. We evaluate the factors that concentrate cobalt to economic levels by these processes. Cobalt is also concentrated by aqueous fluids, either at ambient temperature in laterites developed over ultramafic rocks or hydrothermally in sediment-hosted copper deposits and in cobalt-rich vein deposits, where it crystallizes mainly as sulfide and arsenic-bearing minerals, respectively. Using the available thermodynamic data for aqueous Co species, we evaluate cobalt speciation as a function of temperature and show that, whereas it is transported at ambient temperature in most environments as the simple ion (Co2+), it is most mobile in hydrothermal systems as chloride species. Based on thermodynamic data compiled from a variety of sources, we evaluate stability relationships among some of the principal cobalt sulfide and oxide minerals as a function of temperature, pH, fO2, and αH2S and, in conjunction with the aqueous speciation data, determine their solubility. This information is used, in turn, to predict the physicochemical conditions most favorable for cobalt transport and ore formation by hydrothermal fluids. As thermodynamic data are not available for the cobalt arsenide and sulfarsenide minerals that form the vein-type ore deposits, we use chemographic analysis to qualitatively evaluate their stability relationships and predict the physicochemical controls of ore formation. The data and interpretations of processes presented in this paper provide the theoretical basis for a companion paper in this issue in which we develop plausible models for the genesis of the principal cobalt deposit types.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

Reference95 articles.

1. Metal-sulfide complexation in seawater;Al-Farawati;Marine Chemistry,1999

2. Cobalt: Demand-supply balances in the transition to electric mobility: JRC Science for;Alves Dias,2018

3. Crustally contaminated komatiites and basalts from Kambalda, Western Australia;Arndt;Chemical Geology,1986

4. The chemistry of geothermal waters in Iceland. 2. Mineral equilibria and independent variables controlling water compositions;Arnorsson;Geochimica et Cosmochimica Acta,1983

5. Thermodynamic properties of inorganic substances: Berlin;Barin,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3