OPENING THE MAGMATIC-HYDROTHERMAL WINDOW: HIGH-PRECISION U-Pb GEOCHRONOLOGY OF THE MESOPROTEROZOIC OLYMPIC DAM Cu-U-Au-Ag DEPOSIT, SOUTH AUSTRALIA

Author:

Courtney-Davies Liam1,Ciobanu Cristiana L.1,Tapster Simon R.2,Cook Nigel J.1,Ehrig Kathy3,Crowley James L.4,Verdugo-Ihl Max R.1,Wade Benjamin P.5,Condon Daniel J.2

Affiliation:

1. School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia

2. NERC Isotope Geoscience Laboratory (NIGL), British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, United Kingdom

3. BHP Olympic Dam, Adelaide, South Australia 5000, Australia

4. Department of Geosciences, Boise State University, Boise, Idaho 83725, USA

5. Adelaide Microscopy, The University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

Abstract Establishing timescales for iron oxide copper-gold (IOCG) deposit formation and the temporal relationships between ores and the magmatic rocks from which hydrothermal, metal-rich fluids are sourced is often dependent on low-precision data, particularly for deposits that formed during the Proterozoic. Unlike accessory minerals routinely used to track hydrothermal mineralization, iron oxides are dominant components of IOCG systems and are therefore pivotal to understanding deposit evolution. The presence of ubiquitous, magmatic-hydrothermal U-(Pb)-W-Sn-Mo–bearing zoned hematite resolves a range of geochronological issues concerning formation of the ~1.6 Ga Olympic Dam IOCG deposit, South Australia, at up to ~0.05% precision (207Pb/206Pb weighted mean; 2σ) using isotope dilution-thermal ionization mass spectrometry (ID-TIMS). Coupled with chemical abrasion-ID-TIMS zircon dates from host granite and volcanic rocks within and enclosing the ore-body, a confident magmatic-hydrothermal chronology is defined. The youngest zircon date from the granite intrusion hosting Olympic Dam indicates magmatism was occurring up until 1593.28 ± 0.26 Ma. The orebody was principally formed during a major mineralizing event following granite uplift and during cupola collapse, whereby the hematite with the oldest age is recorded in the outer shell of the deposit at 1591.27 ± 0.89 Ma, ~2 m.y. later than the youngest documented magmatic zircon. Hematite dates captured throughout major lithologies, different ore zones, and the ~2-km vertical extent of the deposit support ~2 m.y. of hydrothermal activity. New age constraints on the spatial-temporal evolution of the formation of Olympic Dam are considered with respect to a mantle to crustal continuum model. Cyclical tapping of magma reservoirs to maintain crystal mushes for extended time periods and incremental building of batholiths on the million-year scale prior to main mineralization pulses can explain the ~2-m.y. temporal window temporal window inferred from the data. Despite the challenge of reconciling such an extended window with contemporary models for porphyry deposits (≤1 m.y.), formation of Proterozoic ore deposits has been addressed at high-precision and supports the case that giant IOCG deposits may form over millions of years.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3