An Experimental Study of Pyrochlore Solubility in Peralkaline Granitic Melts

Author:

Yong Tang12,Linnen Robert L.3,McNeil Alysha G.3

Affiliation:

1. 1 Key Laboratory for High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P.R. China

2. *Present address: 99 West Lincheng Road, Guanshanhu District, Guiyang, Guizhou Province 550081, P.R. China.

3. 2 Department of Earth Sciences, Western University, London, Ontario N6A 5B7, Canada

Abstract

Abstract Peralkaline rocks (defined by molar (Na + K)/Al > 1) are typically enriched in Nb and halogens (such as F and Cl). They can further be subdivided into silica-saturated (e.g., alkali granites) and silica-undersaturated (e.g., nepheline syenites). The current study investigates the solubility product (Ksp) of pyrochlore, the most important ore mineral for Nb in peralkaline granites. The Ksp of pyrochlore increases strongly with increasing temperature and with decreasing A/CNK (molar Al2O3/CaO+Na2O+K2O). By contrast, the Ksp of pyrochlore is only weakly dependent on the F content of the melt, if F concentrations are greater than 1 wt %. The Ksp values of pyrochlore from this study are compared to those of columbite from both this study and the literature to evaluate the controls on the crystallization of these two Nb minerals for granites in variable composition. In peralkaline granitic melts with A/CNK < 1, the Ksp values of pyrochlore are lower than those of columbite, but in peraluminous melts with A/CNK > 1, the Ksp values of pyrochlore are higher than those of columbite, and in subaluminous melts, the Ksp values of pyrochlore and columbite are almost the same. Thus, for melts with similar concentrations of essential structural constituents (Ca-Na in the case of pyrochlore and Mn in the case of columbite), the solubility experiments explain why pyrochlore is more common in peralkaline granitic systems, whereas columbite is the main Nb-bearing mineral in peraluminous systems. An expression that describes the dependence of logKsp on temperature and A/CNK was obtained using the experimental results from the F-enriched granitic melts:logKsp=(−5.22±0.50)×(1000⁄T)−(1.91±0.16)×A/CNK+(3.60±0.61)R2=0.97 where temperature (T) is in Kelvin (K). Using this expression, the saturation solubility or the crystallization temperature of pyrochlore can be calculated for the differentiation of peralkaline granitic magmas. This equation was used in conjunction with data from natural melt inclusions to evaluate whether these melts could have been pyrochlore-saturated. In some cases, the melts could not have been pyrochlore-saturated at reasonable temperatures, but in other cases, notably the pegmatite melts at Strange Lake, the concentrations of the essential structural constituents of pyrochlore (i.e., Nb, Ca, Na, F) in the melt inclusions are consistent with magmatic pyrochlore saturation.

Publisher

Society of Economic Geologists, Inc.

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3