Deformation Mechanisms in Orogenic Gold Systems During Aseismic Periods: Microstructural Evidence from the Central Victorian Gold Deposits, Southeast Australia

Author:

Hunter Nicholas J.R.1,Voisey Christopher R.1,Tomkins Andrew G.1,Wilson Christopher J.L.1,Luzin Vladimir23,Stephen Natasha R.4

Affiliation:

1. School of Earth, Atmosphere, and Environment, Monash University, Victoria 3800, Australia

2. Australian Center of Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia

3. School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia

4. Plymouth Electron Microscopy Centre, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom

Abstract

Abstract In many orogenic gold deposits, gold is located in quartz veins. Understanding vein development at the microstructural scale may therefore provide insights into processes influencing the distribution of gold, its morphology, and its relationship to faulting. We present evidence that deformation processes during aseismic periods produce characteristic quartz microstructures and crystallographic preferred orientations, which are observed across multiple deposits and orogenic events. Quartz veins comprise a matrix of coarse, subidiomorphic, and columnar grains overprinted by finer-grained quartz seams subparallel to the fault trace, which suggests an initial stage of cataclastic deformation. The fine-grained quartz domains are characterized by well-oriented quartz c-axis clusters and girdles oriented parallel to the maximum extension direction, which reveals that fluid-enhanced pressure solution occurred subsequent to grain refinement. Coarser anhedral gold is associated with primary quartz, whereas fine-grained, “dusty” gold trails are found within the fine-grained quartz seams, revealing a link between aseismic deformation and gold morphology. These distinct quartz and gold morphologies, observed at both micro- and macroscale, suggest that both seismic fault-valving and aseismic deformation processes are both important controls on gold distribution.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3