Genesis of As-Pb-Rich Supergene Mineralization: The Tazalaght and Agoujgal Cu Deposits (Moroccan Anti-Atlas Copperbelt)

Author:

Verhaert Michèle1,Madi Atman2,El Basbas Abdelaziz3,Elharkaty Mohamed2,Oummouch Abdellah2,Oumohou Lahcen2,Malfliet Annelies4,Maacha Lhou2,Yans Johan1

Affiliation:

1. Department of Geology, University of Namur, Institute of Life, Earth, and Environment, ILEE, Rue de Bruxelles 61, 5000 Namur, Belgium

2. Managem Group, BP 5199, 20100 Casablanca, Morocco

3. Département des Sciences de la Terre, Ecole Nationale Supérieure des Mines de Rabat, Avenue Ahmed Cherkaoui, BP 753, Agdal, 10000 Rabat

4. Department of Materials Engineering, Sustainable Metals Processing and Recycling, KU Leuven, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven, Belgium

Abstract

Abstract In the Moroccan Anti-Atlas, sulfide deposits hosted by Neoproterozoic to Cambrian formations underwent significant weathering, leading to the formation of supergene profiles. In the Tazalaght Cu-As deposit, three mineralogical steps are distinguished: (1) the replacement of hypogene sulfides (chalcopyrite, pyrite, tennantite) by supergene sulfides (bornite, chalcocite) in the large cementation zone; (2) the formation of oxidized minerals (malachite, azurite, olivenite, and chenevixite, mainly) in a more oxidizing and neutral environment; and (3) the precipitation of goethite, hematite, and quartz in the gossan. In the Cu-As-Pb-V deposit of Agoujgal, the mineralogical units are spatially less confined than at Tazalaght. The narrow cementation zone hosts chalcocite, resulting from the weathering of hypogene chalcopyrite, pyrite, tennantite and galena, while the much more extended and diversified oxidized zone is rich in Cu and Pb carbonates, arsenates, sulfates, phosphates, vanadates, and oxides. Goethite, hematite, mottramite, and late calcite occur in the gossan. Both deposits are characterized by As-rich secondary ores that were formed through similar processes, despite some mineralogical and chemical variations highlighting the influence of the host rocks on weathering. The restricted oxidized mineralization at Tazalaght and the Agoujgal cementation zone most likely arise from the contrasting omnipresence of quartzite at Tazalaght that could not enable a fast and effective neutralization of the fluid’s acidity, and the large amounts of dolomitic host rocks that could be dissolved at Agoujgal. At both sites, the weathering of tennantite through a boxwork texture records the transition from the cementation zone (chalcocite), the oxidized zone (arsenates), and the gossan, and reflects the fluids evolution with time.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3