The Source of Organic Matter and Its Role in Producing Reduced Sulfur for the Giant Sediment-Hosted Jinding Zinc-Lead Deposit, Lanping Basin, Yunnan, Southwest China

Author:

Lan Qing1,Hu Ruizhong12,Bi Xianwu1,Liu Hu3,Xiao Jiafei1,Fu Shanling1,Santosh M.45,Tang Yongyong1

Affiliation:

1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. Sichuan Key Laboratory of Shale Gas Evaluation and Exploitation, Chengdu 610091, China

4. School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China

5. Department of Earth Sciences, University of Adelaide, SA 5005, Australia

Abstract

Abstract The Jinding deposit, located in the northern part of Lanping basin in southwest China, is the second largest Zn-Pb deposit in China and the third largest Mississippi Valley-type deposit identified globally. The deposit consists of several large tabular orebodies within the Jinding dome. Two stages of sulfide mineralization (sphalerite, galena, and pyrite) are identified, which are mainly hosted in the siliciclastic strata of Early Cretaceous and Paleocene age. The early sulfide minerals are mostly fine grained (<100 μm) and disseminated in the host rocks, whereas the late minerals are ty pically coarse grained (up to 1 mm in diameter) and colloform. It is estimated that about 3.17 × 106 m3 of reduced sulfur (H2S) was involved in the sulfide mineralization of the Jinding deposit, although its origin remains equivocal. Here, we investigate the biomarker signatures of organic matter and the mechanism of generation of the H2S. The organic matter in the Jinding deposit occurs mainly as petroleum filling fractures and cavities in the wall rocks and solid bitumen intergrown with sulfides or calcite. Abundant solid bitumen is also found on the surfaces of the carbonate rocks in the Sanhedong Formation as well as in the rock fractures associated with framboidal pyrite. The petrographic characteristics and maturity-related biomarker parameters show that the solid bitumen in the ores has higher thermal maturity than that in the Sanhedong Formation, suggesting that it was generated at different temperatures in the two settings. The source-related parameters suggest that the solid bitumen in the ores and Sanhedong Formation probably both originated in a mixed marine shale and carbonate environment and that the source rocks for the bitumen precursor were late Triassic marine strata. The δ34S values, ranging from –30 to –10‰ for the fine-grained and disseminated sulfide minerals and from –24.50 to –16.27‰ for the solid bitumen in the early (main) mineralization stage, suggest that H2S was generated by microbial sulfate reduction. We propose that this occurred in the Triassic strata prior to or during migration of hydrocarbons to the Jinding dome to form a H2S-enriched paleo-oil reservoir. This hypothesis is supported by the similarity of the δ34S values (–27.62 to –17.38‰) of solid bitumen in the Sanhedong Formation (the source rocks) to that of bitumen in the ores. The late-ore sulfide, however, displays significantly higher δ34S values, ranging from –8 to 0‰. We propose that the H2S of this stage was mainly generated by thermochemical sulfate reduction as a result of the interaction between hydrocarbons, sulfate, and hydrothermal fluid. The hydrocarbons were oxidized into bitumen that has δ34S values from –7.38 to –4.61‰.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3