Stratiform Host-Rock Replacement via Self-Sustaining Reactions in a Clastic-Dominated (CD-type) Zn Deposit

Author:

Magnall Joseph M.1,Wirth Richard1,Hayward Nicholas23,Gleeson Sarah A.14,Schreiber Anja1

Affiliation:

1. 1 GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

2. 2 Teck Australia Pty Ltd, P.O. Box 1677, Western Australia 6872, Australia

3. 3 Centre for Exploration Targeting, University of Western Australia, Crawley, Western Australia 6009, Australia

4. 4 Institute of Geological Sciences, Freie Universität Berlin, Malteserstrasse, 74-100, Berlin 12249, Germany

Abstract

Abstract Stratiform to stratabound replacement of a mixed siliciclastic-carbonate host rock is a defining characteristic of many sediment-hosted base metal deposits. Mineralized rocks in clastic-dominated (CD-type) Zn-Pb ore deposits, which represent our highest value base metal resources, are generally thin (101 m), laterally extensive (103 m), and stratiform to stratabound in fine-grained siltstone and mudstone facies. At the recently discovered Teena CD-type Zn-Pb deposit (Proterozoic Carpentaria province, Australia), the host rock was undergoing burial diagenesis when altered and mineralized by hydrothermal fluids that moved up to 2 km lateral to the fluid input conduit (growth fault) through intraformational intervals. In much of the deposit, carbonate dissolution was an important reaction permeability control, although significant amounts of mineralization also occur in carbonate-free siliciclastic beds. In this study, transmission electron microscopy (TEM) data has been generated on a drill core sample that preserves a sharp reaction front between mineralized and unmineralized domains of the fine-grained siliciclastic compositional end member (carbonate free). Petrographic and mineralogical data provide evidence that oxidized hydrothermal fluids moved through the protolith via reaction permeability that developed from feldspar dissolution. The nature of reactive fluid flow was determined by reactions that took place at the fluid-mineral interface. Pyrite formation during the earliest stage of the hydrothermal paragenesis increased the mineral reactive surface area in the protolith. Acidity was then generated in situ via self-sustaining reactions involving pyrite oxidation, transient Fe sulfate formation, and sphalerite precipitation, which provided positive feedbacks to enhance porosity creation and further fluid infiltration and mineralization. In the absence of carbonate, however, ore fluid pH was buffered by K-feldspar dissolution (~4.5), thereby ensuring sphalerite precipitation was not inhibited under more acidic conditions. All CD-type deposits in the Carpentaria province are hosted by a protolith comprising carbonate, K-feldspar, pyrite, and organic matter; these phases set the boundary conditions for the development of self-sustaining reactions during ore formation. Importantly, these self-sustaining reactions represent a Goldilocks zone for ore formation that is applicable to other sediment-hosted deposits that formed via replacement of mixed siliciclastic-carbonate host rocks (e.g., stratiform Cu).

Publisher

Society of Economic Geologists, Inc.

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

Reference58 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3