Contrasting Geochemistry of Apatite from Peridotites and Sulfide Ores of the Jinchuan Ni-Cu Sulfide Deposit, NW China

Author:

Liu Mei-Yu12,Zhou Mei-Fu3,Su Shang-Guo1,Chen Xue-Gen1

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

2. National Disaster Reduction Center of China, Beijing 100124, China

3. Department of Earth Sciences, University of Hong Kong, Hong Kong SAR, China

Abstract

Abstract Apatite is present within both the hosting lherzolite and sulfide ore at the Jinchuan magmatic Ni-Cu sulfide deposit of northwest China. Apatite grains within the lherzolite are generally large and hexagonal (>200 μm) and are associated with interstitial phlogopite and amphibole. These apatite grains contain ~0.9 wt % F, ~1 wt % Cl, 6,800 to 14,500 ppm rare earth elements (REE) and have in situ δ18OV-SMOW values of 5.10 to 6.38‰, all of which are indicative of crystallization from an evolved silicate magma. In comparison, the massive and disseminated sulfide ores contain fine-grained apatite (<200 μm) that is associated with sulfide minerals, phlogopite, and albite. These apatite grains contain sulfide inclusions that are indicative of crystallization almost coevally with or slightly later than the sulfide minerals. They are Cl-rich apatite with an average Cl of 5.6 wt % but F concentrations are below the limit of detection. They contain 1,860 to 2,300 ppm REE and have in situ δ18OV-SMOW values of 5.62 to 6.47‰. These data suggest that the sulfide-associated apatite formed from F- and REE-depleted, Cl-bearing sulfide melts. The apatite within the lherzolite was overprinted by later hydrothermal fluids as evidenced by the presence of abundant rounded and needle-like monazite and rare allanite inclusions within the apatite that formed as a result of a coupled metasomatism-reprecipitation process shortly after crystallization. Altered and fresh apatite domains have similar δ18O values, suggesting that this alteration was induced by postmagmatic hydrothermal fluids. The apatite within the lherzolite and sulfide ore crystallized from two conjugate immiscible silicate and sulfide melts, respectively. Rare earth elements and F were preferentially partitioning into silicate melts, whereas most volatile components were mainly partitioned into the sulfide melts. The silicate magmas from which apatite crystallized were rich in light REE (LREE) relative to heavy REE (HREE). Volatile components in the sulfide melts changed the physicochemical conditions to enable such high-density melts to migrate upward and finally settle in the shallow chamber with silicate rocks.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3