UNDERSTANDING Cu DEFICIENCY AND Mo ENRICHMENT IN THE JURASSIC ZHANGGUANGCAI-LESSER XING’AN CONTINENTAL ARC (NE CHINA): INSIGHTS FROM THE LUMING PORPHYRY MO DEPOSIT

Author:

Ouyang Hegen1,Caulfield John2

Affiliation:

1. 1 Ministry of Natural Resources Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China

2. 2 Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4000, Queensland, Australia

Abstract

Abstract Continental arcs are favorable sites for porphyry Cu ± Mo deposits. In contrast, the Jurassic Zhangguangcai-Lesser Xing’an continental arc, northeastern China, hosts numerous porphyry Mo deposits with only minor total Cu endowment. The reasons for this remain elusive. Here, we address the issue by tracking the origin and evolution of a long-lived (ca. 12 m.y.) magmatic suite associated with one of the largest Mo deposits in the Zhangguangcai-Lesser Xing’an range continental arc—the Luming porphyry Mo deposit. In combination with previous geochronological data, our results indicate that the pre- (187.5–186.5 Ma) and syn-ore (178.6–175.6 Ma) intrusions at Luming represent separate magma batches from isotopically similar parental magmas with the signature of subduction-metasomatized mantle-derived magmas mixed with crustal melts. The Sr/Y, La/YbN, Dy/YbN, and Eu/Eu* values, together with fO2 and apatite S and Cl concentrations of the syn-ore intrusions, however, are systematically higher than pre-ore intrusions. These data indicate that there is a distinct change in magma chemistry during the period of magmatism quiescence between the pre- and syn-ore magmatism. The marked change in magma chemistry is coincident with an episode of major compression and crustal thickening in the Zhangguangcai-Lesser Xing’an range. We, therefore, interpret that the chemical changes most likely reflect a deepening of the locus of lower crustal magma evolution, linked to increased crustal thickness and/or melt H2O contents accompanying an increase in orogenic stress. Considering the tectonic setting, magmatic evolution in the deep crust, emplacement depth, fractionation degree, and oxygen fugacity of the porphyry-Mo related intrusions at Luming, they are very similar to porphyry Cu deposits worldwide. Accordingly, we propose that the deficiency in Cu and enrichment in Mo of the porphyry deposits in the Zhangguangcai-Lesser Xing’an range most likely formed due to mantle-derived magmas interacting with reduced crustal materials or melts in the deep crust. This resulted in substantial sequestration of Cu and S, decreasing porphyry Cu potential. Such an inference is supported by the distinctly lower S and Cl concentrations of the Mo-related intrusions in the Zhangguangcai-Lesser Xing’an range compared to those associated with porphyry Cu deposits. Our results confirm the fundamental role of increasing compressive stress, crustal thickening, and transcrustal petrologic processes in the formation of porphyry deposits and highlight the role of crustal components in modulating the Mo/Cu ratio of porphyry deposits in a continental arc setting. In addition, we tentatively propose that magmatic apatite SO3 and/or Cl contents can be used to discriminate porphyry Mo-related intrusions from those associated with porphyry Cu deposits in continental arcs.

Publisher

Society of Economic Geologists, Inc.

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3