THE ROLE OF SCANDIUM CHLORIDE AND HYDROXIDE COMPLEXES IN THE FORMATION OF SCANDIUM DEPOSITS: INSIGHTS FROM EXPERIMENTS AND MODELING

Author:

Wang Jiaxin12,Williams-Jones A. E.2,Timofeev A.2,Zhang Xueni3,Liu Jiajun3,Yuan Shunda3

Affiliation:

1. 1 MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 2 Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec H3A 0E8, Canada

3. 3 China University of Geosciences, Beijing 100083, China

Abstract

Abstract Although scandium is commonly concentrated to economic levels by magmatic processes, hydrothermal fluids also play an important role in its concentration. Indeed, the most important source of scandium is currently the Bayan Obo deposit in China, where scandium is extracted from hydrothermally produced aegirine. To know how and why scandium is concentrated by hydrothermal fluids, it is necessary to understand the speciation of scandium in hydrothermal fluids. In a recently published study, we showed that scandium forms stable species with fluoride ions and proposed that such species may have been responsible for the hydrothermal transport of scandium in deposits like Bayan Obo. Chloride ions, which have been shown to form stable complexes with the other rare earth elements (REEs), however, are much more abundant in most hydrothermal fluids than fluoride ions, as are hydroxide ions, particularly at high pH. We, therefore, conducted solubility experiments designed to investigate the stability of scandium chloride and hydroxide complexes in hydrothermal fluids. The experiments investigating the role of chloride species considered the solubility of Sc2O3(s) in the H2O-NaCl-HCl system at 100°, 150°, 300°, and 350°C and saturated water vapor pressure. These experiments showed that scandium concentration is independent of chloride concentration over the range of chlorinity investigated, i.e., up to 3.6 mol Cl– and that scandium, therefore, does not form stable complexes with chloride ions. To evaluate the role of hydroxide species in scandium transport and avoid the effect of chloride ions in the complexation, a second set of experiments was conducted that determined the solubility of Sc2O3(s) in H2O-NaClO4-HClO4 solutions at 100°, 150°, 200°, and 250°C, and saturated water vapor pressure. The results of these experiments showed that the solubility of Sc2O3(s) depends on pH and temperature. Based on the former dependence, two scandium hydroxide complexes, Sc(OH)2+ and Sc(OH)3°, were identified at low and higher pH, respectively. The formation constant (log β) determined for Sc(OH)2+ is 10.29 ± 0.07, 10.32 ± 0.07, 10.35 ± 0.19, and 10.91 ± 0.20 at 100°, 150°, 200°, and 250°C, respectively. That of Sc(OH)3° is 27.22 ± 0.68, 26.66 ± 1.35, 27.04 ± 0.13, and 28.02 ± 0.14 at the same temperatures, respectively. These results demonstrate that, unlike the case for the other rare earth elements, chloride plays a negligible role in transporting scandium in hydrothermal fluids. Instead, they show that scandium hydroxide complexes can be important in the transport of scandium and could have contributed significantly to the formation of deposits like those at Bayan Obo.

Publisher

Society of Economic Geologists, Inc.

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

Reference59 articles.

1. Hydrolysis of Sc3+ and the stabilities of scandium (III)-Tiron chelates in aqueous solution;Akalin;Journal of Inorganic and Nuclear Chemistry,1971

2. Investigation of the complex formation of scandium by the ion exchange method;Alimarin;Vestnik Moskovskogo Universiteta,1965

3. Spectrophotometric determination of the hydrolysis constants of scandium ions;Antonovich;Russian Journal of Inorganic Chemistry,1968

4. Hydrolysis of scandium (III): ultracentrifugation and acidity measurements;Aveston;Journal of the Chemical Society A: Inorganic, Physical, Theoretical,1966

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3