Origin of Hydrothermal Barite in Polymetallic Veins and Carbonate-Hosted Deposits of the Cyclades Continental Back Arc

Author:

Wind Sandra C.12,Hannington Mark D.13,Schneider David A.1,Fietzke Jan3,Kilias Stephanos P.4,Bruce Gemmell J.5

Affiliation:

1. 1 Department of Earth and Environmental Sciences, University of Ottawa, Ottawa K1N 6N5, Canada

2. *Present address: Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.

3. 2 GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany

4. 3 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens 15784, Greece

5. 4 Center for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Hobart, Tasmania 7001, Australia

Abstract

Abstract Polymetallic veins and breccias and carbonate-replacement ore deposits in the Cyclades continental back arc, Greece, formed from a range of fluid and metal sources strongly influenced by the dynamics of the late Mesozoic-Cenozoic Hellenic subduction system. These complexities are recorded in the isotopic signatures of hydrothermal barite. We investigated 17 mineral occurrences on four Cycladic islands and from Lavrion on the mainland. Here, barite occurs in almost all deposit types of Miocene to Quaternary age. We used a multiple isotope and geochemical approach to characterize the barite in each deposit, including mineral separate analysis of δ34S and δ18O and laser ablation-inductively coupled plasma-mass spectrometry of 87Sr/86Sr and δ34S. Barite from carbonate-hosted vein and breccia Pb-Zn-Ag mineralization on Lavrion has a wide range of δ34S (2–20‰) and δ18O (10–15‰) values, reflecting a mix of magmatic and surface-derived fluids that have exchanged with isotopically heavy oxygen in the carbonate host rock. Sulfur (δ34S = 10–13‰) and oxygen (δ18O = 9–13‰) values of barite from the carbonate-hosted vein iron and barite mineralization on Serifos are permissive of a magmatic sulfate component. Barite from epithermal base and/or precious metal deposits on Milos has δ34S (17–28‰) and δ18O (9–11‰) values that are similar to modern seawater. In contrast, barite from vein-type deposits on Antiparos and Mykonos has a wide range of δ34S (16–37‰) and δ18O (4–12‰) values, indicating a seawater sulfate source modified by mixing or equilibration of the hydrothermal fluids with the host rocks. Strontium isotope ratios of barite vary regionally, with 87Sr/86Sr ≥ 0.711 in the central Cyclades and 87Sr/86Sr ≤ 0.711 in the west Cyclades, confirming the strong influence of upper crustal rocks on the sources of fluids, Sr, and Ba in the formation of ore.

Publisher

Society of Economic Geologists, Inc.

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3