Working up an Apatite: Enigmatic Mesoarchean Hydrothermal Cu-Co-Au Mineralization in the Pilbara Craton

Author:

Fox David C.M.12,Spinks Samuel C.1,Barham Milo23,Kirkland Christopher L.23,Pearce Mark A.1,Aspandiar Mehrooz2,Birchall Renee1,Mead Ed4

Affiliation:

1. CSIRO Mineral Resources, 26 Dick Perry Avenue, Kensington, WA 6151, Australia

2. The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

3. Timescales of Mineral Systems, Centre for Exploration Targeting - Curtin Node, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

4. Artemis Resources, Suite 1, 11 Ventnor Avenue, West Perth, WA 6005, Australia

Abstract

Abstract Globally, significant examples of hydrothermal Cu-Co mineralization are rare within Archean greenstone belts, especially relative to the endowment of these terranes with other world-class hydrothermal ore deposits, particularly Au deposits. Using U-Pb geochronology of hydrothermal apatite, this study provides the first absolute age constraints on the timing of mineralization for the Carlow Castle Cu-Co-Au deposit. Carlow Castle is a complex, shear zone-hosted, veined Cu-Co-Au mineral system situated within the Paleo-Mesoarchean Roebourne greenstone belt of the Pilbara craton of northwestern Western Australia. Although U-Pb geochronology of this deposit is challenging due to low levels of radiogenic Pb in synmineralization apatite, mineralization is best estimated at 2957 ± 67 Ma (n = 61). Additionally, analysis of alteration phases associated with Carlow Castle mineralization suggests that it is dominated by a propylitic assemblage that is characteristic of alkaline fluid chemistry and peak temperatures >300°C. Within proximal portions of the northwest Pilbara craton, the period of Carlow Castle’s formation constrained here is associated with significant base-metal volcanogenic massive sulfide mineralization and magmatic activity related to back-arc rifting. This rifting and associated magmatic activity are the most likely source of Carlow Castle’s unique Cu-Co-Au mineralization. Carlow Castle’s Mesoarchean mineralization age makes it among the oldest discovered Cu-Co-Au deposits globally, and unique in the broader context of hydrothermal Cu-Co-Au deposits. Globally, hydrothermal Cu-Co mineralization occurs almost exclusively as Proterozoic and Phanerozoic stratiform sediment-hosted Cu-Co deposits due to the necessity of meteorically derived oxidized ore fluids in their formation. This research therefore has implications for exploration for atypical Cu-Co deposits and Cu-Co metallogenesis through recognition of comparably uncommon magmatic-hydrothermal Cu-Co-Au ore-forming processes and, consequently, the potential for analogous Cu-Co-Au mineralization in other Archean greenstone belts.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3