An Experimental Study of the Solubility and Speciation of MoO3(s) in Hydrothermal Fluids at Temperatures up to 350°C

Author:

Shang Linbo12,Williams-Jones A. E.2,Wang Xinsong12,Timofeev A.2,Hu Ruizhong1,Bi Xianwu1

Affiliation:

1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

2. Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec H3A 0E8, Canada

Abstract

Abstract The solubility of molybdenum trioxide (MoO3(s)) in aqueous solutions has been investigated experimentally at 250°, 300°, and 350°C and saturated water vapor pressure, and total Na concentrations ranging from 0 to 3 molal (m). Results of these experiments show that the solubility of MoO3(s) increases with increasing temperature and at 350°C can reach several thousand parts per million at high salinity (>1 m NaCl). At low Na+ activity, MoO3(s) dissolves dominantly as HMoO4,− whereas at high Na+ activity, the dominant species is NaHMoO40. The two dissolution reactions are MoO3(s)+H2O=HMoO4−+H+(1) and MoO3(s)+H2O+Na+=NaHMoO40+H+.(2) The values of the logarithms of the equilibrium constants for reaction (1) are –5.20 ± 0.12, –5.31 ± 0.17, and –5.50 ± 0.09 at 250°, 300°, and 350°C, respectively, and for reaction (2) the values are –3.40 ± 0.11, –3.25 ± 0.19, and –2.97 ± 0.09 for the same temperatures. In combination, these equilibrium constants yield equilibrium constants for the reaction relating the two aqueous species: Na++HMoO4−=NaHMoO40.(3) The values of the logarithms of the equilibrium constants for reaction (3) are 1.80 ± 0.16, 2.06 ± 0.25, and 2.53 ± 0.13 at 250°, 300°, and 350°C, respectively. Calculations, based on the results of this study and thermodynamic data available for other species, suggest strongly that in ore-forming hydrothermal systems, molybdenum is transported mainly as NaHMoO40 and deposits as molybdenite in response to cooling and possibly a reduction in fO2.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3