Affiliation:
1. Istituto Nazionale di Geofisica, Rome,
2. Università “La Sapienza”, Dipartimento di Fisica, Rome,
Abstract
<p>High Frequency radio waves reflected by the ionosphere can provide a relevant amount of information within the composite received signal. The ionosphere is indeed a frequency dispersive, bi-refractive, absorbing medium, in which multipath propagation occurs due to disturbance on a varied time-spatial scale. On the time-spatial level of Small Scale Disturbances (SSD) the ionosphere dynamics, detectable by Vertical Ionospheric Sounding (VIS), is mainly dependent on wrinkled layers acting as multi-reflectors. The present paper discusses different aspects of the effects of multipath fading suffered by the wave along the propagation path and potentially associated with SSD. To achieve these objectives, a VIS campaign at a fixed frequency of 3.0 MHz was conducted at the ionospheric observatory in Rome (Latitude 41.8 N; Longitude 12.5 E), by collecting a series of measurements of the power variations in received echo signals recorded between two consecutive ionograms whose sounding repetition rate was set to 15 min. The obtained results show that: 1) the fading suffered by the wave follows either a Rayleigh trend or a Nakagami-Rice trend, or a mix of them, the mixed case being the most frequent (about 65 % of the analysed cases); 2) the predominant periodicities characterizing the power variation are less than 25 s; such values are compatible with the small scale ionospheric disturbances; 3) for all the 24 hours of the day the ionospheric reflector is pretty stable and for time intervals of 10-30 s the periods of stability occur with a percentage of occurrence ranging between 55% and 95 %; for time intervals of 190- 210 s the periods of stability occur instead with a percentage of occurrence ranging between 5% and 54 %.</p>
Publisher
Instituto Nazionale di Geofisica e Vulcanologia, INGV
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献