Determination of path attenuation and site characteristics of the North-west Himalayan region and adjoining regions within the Indian Territory using Generalized inversion method

Author:

Harinarayan Nelliparanbil1,Kumar Abhishek2ORCID

Affiliation:

1. Indian Institute of Technology Guwahati

2. Indian Institute of Technology Guwahati,

Abstract

North-west Himalayas and its adjoining regions have been experiencing deadly earthqaukes from time to time and are home for a large portion of population of Indian subcontinent. Knowledge of regional path attenuation and site parameters are prerequisite while attempting seismic hazard studies towards minimizing damages during future earthqaukes for a region. Present work focuses on the determination of path attenuation and site characteristics of earthqaukes recording stations, located in the north-west Himalayas and its adjoining regions, within India. It is done using two- step generalized inversion technique. In the first step of inversion, non-parametric attenuation curves are developed by constraining attenuation to be a smooth decaying function with hypocentral distance. Qs = (105 ± 11)f (0.94 ± 0.08) as S wave quality factor is obtained indicating that the region is seismically active having high degree of heterogeneities in the crustal medium. In the second step of generalized inversion, site amplification curve, at each recording station, is computed as the ratio of site spectral amplitude of horizontal and vertical components. In addition, based on Horizontal to vertical spectral ratio (HVSR) method, predominant frequency of each recording station is calculated. Values of predominant frequencies based on HVSR and generalized inversion are found matching for each of the recording station. Based on obtained predominant frequency, site class of 101 recording stations, which at present are absent, are determined in this work. Determined path attenuation as well as site parameters can be collectively used for developing regional ground motion models and subsequently for seismic hazard studies for the selected region.

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Subject

Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3