Landslide Investigation Using Seismic Refraction Tomography Method: A Review

Author:

Parisa Imani 1,Amr Abd El-Raouf 2,Gang Tian 1

Affiliation:

1. School of Earth Sciences, Zhejiang University, Zheda Road 38, Hangzhou 310027, China

2. 1 School of Earth Sciences, Zhejiang University, Zheda Road 38, Hangzhou 310027, China 2 Geology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

Abstract

Since the early 1960s, near-surface seismic refraction tomography (SRT) has been extensively used as a non-invasive and cost-effective geophysical method to characterize complex geological structures for landslide investigation. This geophysical technique is able to characterize the slope material, the sliding surface's geometry, the landslide mass movement, the physical properties of media, and the water saturation effects on the slope. Therefore, this method has become an appropriate method due to the increasing progress of novel algorithms and the improvements of field-data collection systems. In this paper, we attempt to review the essential research that investigated various types of landslides influenced by water saturation and landslide materials and identified in various areas, since the year 2000. Significant conclusions obtained by applying different survey strategies and data processing algorithms in seismic refraction surveys are widely discussed concentrating on the advantages and disadvantages of this method. The main results obtained by the few available studies applying time-lapse SRT (TLSRT) are particularly analyzed.

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3