Autoregressive models as a tool to discriminate chaos from randomness in geoelectrical time series: an application to earthquake prediction

Author:

V. Cuomo 1,V. Lapenna 1,M. Macchiato 2,C. Serio 3

Affiliation:

1. Istituto di Metodologie Avanzate di Analisi Ambientale, IMAAA/CNR, Tito Scalo (PZ), Italy

2. Dipartimento di Scienze Fisiche, Università Federico II, Napoli, Italy

3. Dipartimento di Ingegneria e Fisica dell'Ambiente, Università della Basilicata, Potenza, Italy

Abstract

The time dynamics of geoelectrical precursory time series has been investigated and a method to discriminate chaotic behaviour in geoelectrical precursory time series is proposed. It allows us to detect low-dimensional chaos when the only information about the time series comes from the time series themselves. The short-term predictability of these time series is evaluated using two possible forecasting approaches: global autoregressive approximation and local autoregressive approximation. The first views the data as a realization of a linear stochastic process, whereas the second considers the data points as a realization of a deterministic process, supposedly non-linear. The comparison of the predictive skill of the two techniques is a test to discriminate between low-dimensional chaos and random dynamics. The analyzed time series are geoelectrical measurements recorded by an automatic station located in Tito (Southern Italy) in one of the most seismic areas of the Mediterranean region. Our findings are that the global (linear) approach is superior to the local one and the physical system governing the phenomena of electrical nature is characterized by a large number of degrees of freedom. Power spectra of the filtered time series follow a P(f) = F-a scaling law: they exhibit the typical behaviour of a broad class of fractal stochastic processes and they are a signature of the self-organized systems.

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Subject

Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3