New evidence on the geologic setting of Medjerda Valley plain (northern Tunisia) from integrated geophysical study of Triassic evaporite bodies

Author:

Amira Ayed-Khaled 1,Taher Zouaghi 2,Mohamed Atawa 3,Mohamed Ghanmi 1

Affiliation:

1. Université Tunis El Manar, Département de Géologie, Tunis,

2. King Abdulaziz University (KAU), Faculty of Earth Sciences, Jeddah, Saudi Arabia; Laboratoire de Géoressources, CERTE, Pôle Technologique de Borj Cédria, Soliman,

3. Laboratoire de Géoressources, CERTE, Pôle Technologique de Borj Cédria, Soliman, Tunisia; Université de Carthage, Département des Sciences de la Terre, Jarzouna,

Abstract

<p>Integrated gravity, two dimensional (2D) seismic and field data (lithostratigraphy and tectonic deformations) help to understand the structural setting of the Triassic evaporites in the Atlas Mountains of northern Tunisia. In the Medjerda Valley plain, Triassic outcrops are bounded by NE-, ENE-, and NW-trending faults. These faults have been reactivated and have controlled the basin framework. The gravity analysis included the construction of a gravity anomaly maps, and 2D gravity model. Corresponding gravity responses of the complete Bouguer anomaly, the residual gravity anomaly, and upward continued maps reveal that the Triassic evaporites do not have a neat gravity signature. 2D seismic profiles show rising structures of Triassic strata associated with Mesozoic and Cenozoic tectonic edifices. The seismic horizons, calibrated to outcrop and well data, reveal paleohighs and diapirs of Triassic strata that were existed during the Jurassic and Early Cretaceous. These structural features induced a lateral outpouring of evaporitic strata within Late Cretaceous strata. A NW–SE-trending gravity model, which crosses the Medjerda Valley plain, highlights geometry identified on seismic lines. In the Medjerda plain, Mesozoic extensional and transtensional movements were associated with rising of Triassic evaporites, thus resulting in diapiric structures. The Late Cretaceous-Eocene structural setting was marked by outpouring of locally extruded Triassic evaporites. The Tertiary and Quaternary times are marked by major contractional events, causing inversion of pre-existing tectonic edifices. This integrated geophysical study provides a greater understanding of the Thibar deep structure, and a new geometry model of the Triassic evaporite bodies in the North Tunisia.</p>

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3