Estimating depths and dimensions of gravity sources through optimized support vector classifier (SVC)

Author:

Mohammad Ehsan Hekmatian 1,Vahid Ebrahimzadeh Ardestani 2,Mohammad Ali Riahi 2,Ayyub Memar Koucheh Bagh 3

Affiliation:

1. Islamic Azad University, Faculty of Basic Sciences, Science and Research Branch, Tehran, Iran; Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran,

2. Institute of Geophysics, University of Tehran, Tehran,

3. Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran,

Abstract

<p>By researching and applying new methods we will be able to improve significantly estimation of shapes, dimensions and depths of gravity sources. After shapes estimation of gravity sources through support vector classifier (SVC) in our last research [Hekmatian et al. 2015], in this paper SVC is applied for estimating depths and dimensions of gravity sources. These estimations give us logical and complete initial guesses regarding shapes, depths and dimensions of gravity sources which are needed in more precise interpretations and inversions of gravity sources. Also for better application of SVC, we selected more proper features using the technique called feature selection (FS). In this paper, we trained SVC with 320 synthetic gravity profiles for estimation of dimensions and depths of gravity sources. We tested the trained SVC codes by about 200 other synthetic and some real gravity profiles. The depths and dimensions of a well along with two ore bodies (three real gravity sources) are estimated during the testing process.</p>

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3