Rayleigh phase velocity and azimuthal anisotropy from ambient noise data in the Sanjiang lateral collision zone in the SE margin of the Tibetan plateau

Author:

Tian Jianhui1ORCID,Gao Yuan,Li YingORCID

Affiliation:

1. a:1:{s:5:"en_US";s:56:"Institute of Geophysics, China Earthquake Administration";}

Abstract

The Sanjiang lateral collision zone in the SE margin of the Tibetan Plateau is located at the east edge of the junction of the Eurasian and Indian plates. Using the continuous seismic waveforms recorded by 146 temporary and 21 permanent seismic stations in the study area, we obtain Rayleigh wave phase velocity and azimuthal anisotropy for periods 2 s to 40 s from the surface wave direct tomography method. This direct tomography method can obtain finer high-resolution results than the traditional surface wave tomography. Our results show that the low-velocity anomalies are found beneath the Lijiang-Xiaojinhe fault (LXF), Red River fault (RRF), Chuxiong fault and Tengchong volcanoes, the high-velocity anomalies are in the region of Weixi and Panzhihua at periods 5 ~ 8 s. The fast velocity directions mainly align N-S. At periods 10 ~ 15 s, the distributions of low-velocity anomalies are consistent with the strikes of LXF and RRF. At periods 20 ~ 35 s, the high- and low-velocity anomalies are bounded by the RRF, which may imply the fault is divided by the thick crust (indicated by low-velocity anomalies) and the thin crust with shallow mantle (indicated by high-velocity anomalies). The fast velocity directions at the periods 10 ~ 35 s rotate clockwise from north to south of the study area. The intensity of anisotropy in the low-velocity zone is stronger than that in the high-velocity zone, and the intensity in the north of the study area is stronger than that in the south. Results indicate the source of anisotropy may be different in each subzone.

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3