Improvement of Quality Performance in Mask Production by Feature Selection and Machine Learning Methods and An Application

Author:

Tebrizcik Semra1ORCID,Ersöz Süleyman2ORCID,Aktepe Adnan2ORCID

Affiliation:

1. KIRIKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

2. KIRIKKALE UNIVERSITY

Abstract

With the development of technology, large databases become more accessible thanks to automation systems that automatically keep data and allow the use of large databases in many areas. Machine learning approaches, a sub-branch of artificial intelligence, are used in making decisions about the process by analyzing the data stored in databases and converting them into information. In this paper, the body production process of the surgical (medical) mask is analyzed. As it is known, surgical masks have become a part of our lives by becoming widespread all over the world with the COVID-19 pandemic. In the surgical mask body production process, using the real data of the production factors, first of all, filtering feature selection methods and analyzes were made and the feature selection method to be used was determined. With the specified feature selection method, the factors affecting the product quality are determined. Secondly, machine learning methods were used to determine the values and value ranges of factors (features) in the production of defect-free products. The performances of the machine learning models established in the second stage were increased by feature selection analysis. In the study, together with the parameter optimizations made to machine learning algorithms, it was seen that the best algorithm to estimate the defective product rate was the Ibk algorithm with 92.3% accuracy, 91.9% F measurement and 93% AUC value. Finally, in line with the decision rules revealed in the study, it was observed that the fabric types used for the upper/middle/lower layers that make up the body part in the mask body production process greatly affect the rates of defective or defect-free products. If the rod apparatus around the nose belongs to class k, it has been determined that many masks are defective. Improvement suggestions were presented according to the application results.

Publisher

Turkish National Defense University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3