An Algorithm for Restoring a Function from Different Functionals for Predicting Rare Events in the Economy

Author:

Korablev Yu. A.1ORCID

Affiliation:

1. Financial University

Abstract

This paper aims to restore some parameters of functionals using cubic splines to forecast rare events in finance and economics. The article considers the mathematical method for recovering an unknown function from many different functionals, such as the value of a function, the value of its first derivative, second derivative, as well as a definite integral over a certain interval. Moreover, all observations can occur with an error. Therefore, the author uses a method of recovering a function from different functionals observed with an error. The function is restored in the form of a cubic spline, which has a value-second derivative representation. The optimization problem consists in minimizing several sums of squares of the deviation at once, for ordinary values, for the first derivatives, for the second derivatives, for integrals, and for roughness penalty. For greater flexibility, weights have been introduced both for each group of observations and for each individual observation separately. The article shows in detail how the elements of each corresponding matrix are filled in. The appendix provides an implementation of the method as a FunctionalSmoothingSpline function in R language. Examples of using the method for the analysis and forecasting of rare (discrete) events in the economy are given. Formulas for calculating the cross-validation score CV (α) for the automatic procedure for determining the smoothing parameter α from the data in our problem of recovering a function by many functionals are shown. The paper concludes that the presented method makes it possible to analyze and predict rare events, which will allow you to prepare for such future events, get some benefit from this, or reduce possible risks or losses.

Publisher

Financial University under the Government of the Russian Federation

Subject

Management of Technology and Innovation,Economics, Econometrics and Finance (miscellaneous),Finance,Business, Management and Accounting (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3