Inflation Forecasting: The Practice of Using Synthetic Procedures

Author:

Balatskiy E.  V.1ORCID,Yurevich M. A.2ORCID

Affiliation:

1. Financial University; Central Economic-Mathematical Institute of the Russian Academy of Sciences

2. Financial University

Abstract

The article contains a review of inflation forecasting models, including the most popular class of models as one-factor models: random walk, direct autoregression, recursive autoregression, stochastic volatility with an unobserved component and of the integrated model of autoregression with moving average. Also, we discussed the possibilities of various modifications of models based on the Phillips curve (including the “triangle model”), vector autoregressive models (including the factor-extended model of B. Bernanke’s vector autoregression), dynamic general equilibrium models and neural networks. Further, we considered the comparative advantages of these classes of models. In particular, we revealed a new trend in inflation forecasting, which consists of the introduction of synthetic procedures for private forecasts accounting obtained by different models. An important conclusion of the study is the superiority of expert assessments in comparison with all available models. We have shown that in the conditions of a large number of alternative methods of inflation modelling, the choice of the adequate approach in specific conditions (for example, for the Russian economy of the current period) is a non-trivial procedure. Based on this conclusion, the authors substantiate the thesis that large prognostic possibilities are inherent in the mixed strategies of using different methodological approaches, when implementing different modelling tools at different stages of modelling, in particular, the multifactorial econometric model and the artificial neural network.

Publisher

Financial University under the Government of the Russian Federation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3