Applying News and Media Sentiment Analysis for Generating Forex Trading Signals

Author:

Olaiyapo O. F.1ORCID

Affiliation:

1. Emory University

Abstract

The objective of this research is to examine how sentiment analysis can be employed to generate trading signals for the Foreign Exchange (Forex) market.The author assessed sentiment in social media posts and news articles pertaining to the United States Dollar (USD) using a combination of methods: lexicon-based analysis and the Naive Bayes machine learning algorithm.The findings indicate that sentiment analysis proves valuable in forecasting market movements and devising trading signals. Notably, its effectiveness is consistent across different market conditions.The author concludes that by analyzing sentiment expressed in news and social media, traders can glean insights into prevailing market sentiments towards the USD and other pertinent countries, thereby aiding trading decision-making. This study underscores the importance of weaving sentiment analysis into trading strategies as a pivotal tool for predicting market dynamics.

Publisher

Financial University under the Government of the Russian Federation

Reference11 articles.

1. Drehmann M., Sushko V. The global foreign exchange market in a higher volatility environment. BIS Quarterly Review. 2022;(12):33–48. URL: https://www.bis.org/publ/qtrpdf/r_qt2212f.pdf

2. Kao B., Huang K.W. The impact of news sentiment on stock returns: Evidence from the US stock market. International Journal of Economics and Finance. 2016;8(45):18–33.

3. Bollen J., Mao H., Zeng X. Twitter mood predicts the stock market. Journal of Computational Science. 2011; Mar1;2(1):1–8. URL: https://doi.org/10.1016/j.jocs.2010.12.007

4. Fang X., Zhan J. Sentiment analysis using product review data. Journal of Big Data. 2015;Dec;2(1):1–4. DOI: 10.1186/s40537–015–0015–2

5. Zhang Y., Song D., Zhang P. et al. A quantum-inspired sentiment representation model for twitter sentiment analysis. Applied Intelligence. 2019;Aug15;49:3093–3108. URL: https://doi.org/10.1007/s10489–019–01441–4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3