Stiffness transitions in new walls post-cell division differ between Marchantia polymorpha gemmae and Arabidopsis thaliana leaves

Author:

Bonfanti Alessandra12ORCID,Smithers Euan Thomas1,Bourdon Matthieu1ORCID,Guyon Alex1ORCID,Carella Philip13ORCID,Carter Ross1,Wightman Raymond1ORCID,Schornack Sebastian1ORCID,Jönsson Henrik145ORCID,Robinson Sarah1

Affiliation:

1. Sainsbury Laboratory Cambridge University, Cambridge CB2 1LR, United Kingdom

2. Department of Civil and Environmental Engineering, Politecnico di Milano, Milan 20133, Italy

3. Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom

4. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom

5. Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund 223 62, Sweden

Abstract

Plant morphogenesis is governed by the mechanics of the cell wall—a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall’s age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.

Funder

Royal Society

Gatsby Charitable Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference83 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3