Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres

Author:

Kim Taehyun1ORCID,Wei Xuehui1ORCID,Chariton Stella2ORCID,Prakapenka Vitali B.2,Ryu Young-Jay2ORCID,Yang Shize3ORCID,Shim Sang-Heon1ORCID

Affiliation:

1. School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287

2. GeoSoilEnviroCARS, Center for Advanced Radiation Sources, University of Chicago, Argonne, IL 60439

3. Eyring Materials Center, Arizona State University, Tempe, AZ 85287

Abstract

Many sub-Neptune exoplanets have been believed to be composed of a thick hydrogen-dominated atmosphere and a high-temperature heavier-element-dominant core. From an assumption that there is no chemical reaction between hydrogen and silicates/metals at the atmosphere–interior boundary, the cores of sub-Neptunes have been modeled with molten silicates and metals (magma) in previous studies. In large sub-Neptunes, pressure at the atmosphere–magma boundary can reach tens of gigapascals where hydrogen is a dense liquid. A recent experiment showed that hydrogen can induce the reduction of Fe 2 + in (Mg,Fe)O to Fe 0 metal at the pressure–temperature conditions relevant to the atmosphere–interior boundary. However, it is unclear whether Mg, one of the abundant heavy elements in the planetary interiors, remains oxidized or can be reduced by H. Our experiments in the laser-heated diamond-anvil cell found that heating of MgO + Fe to 3,500 to 4,900 K (close to or above their melting temperatures) in an H medium leads to the formation of Mg 2 FeH 6 and H 2 O at 8 to 13 GPa. At 26 to 29 GPa, the behavior of the system changes, and Mg–H in an H fluid and H 2 O were detected with separate FeH x . The observations indicate the dissociation of the Mg–O bond by H and subsequent production of hydride and water. Therefore, the atmosphere–magma interaction can lead to a fundamentally different mineralogy for sub-Neptune exoplanets compared with rocky planets. The change in the chemical reaction at the higher pressures can also affect the size demographics (i.e., “radius cliff”) and the atmosphere chemistry of sub-Neptune exoplanets.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3