Fundamental limits in structured principal component analysis and how to reach them

Author:

Barbier Jean1ORCID,Camilli Francesco1ORCID,Mondelli Marco2ORCID,Sáenz Manuel3ORCID

Affiliation:

1. Quantitative Life Sciences and Mathematics Sections, International Centre for Theoretical Physics, Trieste 34151, Italy

2. Institute of Science and Technology Austria, Klosterneuburg 3400, Austria

3. Centro de Matemática, Universidad de La República, Montevideo 11400, Uruguay

Abstract

How do statistical dependencies in measurement noise influence high-dimensional inference? To answer this, we study the paradigmatic spiked matrix model of principal components analysis (PCA), where a rank-one matrix is corrupted by additive noise. We go beyond the usual independence assumption on the noise entries, by drawing the noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise correlations make the setting relevant for applications but analytically challenging. We provide characterization of the Bayes optimal limits of inference in this model. If the spike is rotation invariant, we show that standard spectral PCA is optimal. However, for more general priors, both PCA and the existing approximate message-passing algorithm (AMP) fall short of achieving the information-theoretic limits, which we compute using the replica method from statistical physics. We thus propose an AMP, inspired by the theory of adaptive Thouless–Anderson–Palmer equations, which is empirically observed to saturate the conjectured theoretical limit. This AMP comes with a rigorous state evolution analysis tracking its performance. Although we focus on specific noise distributions, our methodology can be generalized to a wide class of trace matrix ensembles at the cost of more involved expressions. Finally, despite the seemingly strong assumption of rotation-invariant noise, our theory empirically predicts algorithmic performance on real data, pointing at strong universality properties.

Funder

EC | ERC | HORIZON EUROPE European Research Council

Lopez-Lorera prize

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3