Anomalous magnetoresistance in a nonconjugated radical polymer glass

Author:

Akkiraju Siddhartha1,Gilley Dylan M.1ORCID,Savoie Brett M.1ORCID,Boudouris Bryan W.12ORCID

Affiliation:

1. Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906

2. Department of Chemistry, Purdue University, West Lafayette, IN 47906

Abstract

Macromolecules bearing open-shell entities offer unique transport properties for both electronic and spintronic devices. This work demonstrates that, unlike their conjugated polymer counterparts, the charge carriers in radical polymers (i.e., macromolecules with nonconjugated backbones and with stable open-shell sites present at their pendant groups) are singlet cations, which opens significant avenues for manipulating macromolecular design for advanced solid-state transport in these highly transparent conductors. Despite this key point, magnetoresistive effects are present in radical polymer thin films under applied magnetic fields due to the presence of impurity sites in low (i.e., <1%) concentrations. Additionally, thermal annealing of poly(4-glycidyloxy-2,2,6,6- tetramethylpiperidine-1-oxyl) (PTEO), a nonconjugated polymer with stable open-shell pendant groups, facilitated better electron exchange and pairwise spin interactions resulting in an unexpected magnetoresistance signal at relatively low field strengths (i.e., <2 T). The addition of 4-hydroxy-2,2,6,6-tetramethylpiperidin-N-oxy (TEMPO-OH), a paramagnetic species, increased the magnitude of the MR effect when the small molecule was added to the radical polymer matrix. These macroscopic experimental observables are explained using computational approaches that detail the fundamental molecular principles. This intrinsic localized charge transport behavior differs from the current state of the art regarding closed-shell conjugated macromolecules, and it opens an avenue towards next-generation transport in organic electronic materials.

Funder

DOD | USAF | AMC | Air Force Office of Scientific Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3