The adaptive antioxidant response during fasting-induced muscle atrophy is oppositely regulated by ZEB1 and ZEB2

Author:

Ninfali Chiara1ORCID,Cortés Marlies1ORCID,Martínez-Campanario M. C.1ORCID,Domínguez Verónica2ORCID,Han Lu1ORCID,Tobías Ester3,Esteve-Codina Anna4ORCID,Enrich Carlos5,Pintado Belén2,Garrabou Gloria3,Postigo Antonio167ORCID

Affiliation:

1. Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona 08036, Spain

2. National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC-CBMSO), Transgenesis Facility, High Research Council (CSIC) and Autonomous University of Madrid, Cantoblanco, Madrid 28049, Spain

3. Group of Muscle Research and Mitochondrial Function, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), University of Barcelona School of Medicine, Hospital Clínic of Barcelona, and Rare Diseases Networking Biomedical Research Center (CIBERer), Barcelona 08036, Spain

4. National Center for Genomics Analysis (CNAG), Barcelona 08028, Spain

5. Department of Biomedicine, University of Barcelona School of Medicine, and Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona 08036, Spain

6. Molecular Targets Program, Department of Medicine, James Graham Brown Cancer Center, Louisville, KY 40202

7. Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain

Abstract

Reactive oxygen species (ROS) serve important homeostatic functions but must be constantly neutralized by an adaptive antioxidant response to prevent supraphysiological levels of ROS from causing oxidative damage to cellular components. Here, we report that the cellular plasticity transcription factors ZEB1 and ZEB2 modulate in opposing directions the adaptive antioxidant response to fasting in skeletal muscle. Using transgenic mice in which Zeb1 or Zeb2 were specifically deleted in skeletal myofibers, we show that in fasted mice, the deletion of Zeb1 , but not Zeb2 , increased ROS production and that the adaptive antioxidant response to fasting essentially requires ZEB1 and is inhibited by ZEB2. ZEB1 expression increased in fasted muscles and protected them from atrophy; conversely, ZEB2 expression in muscles decreased during fasting and exacerbated muscle atrophy. In fasted muscles, ZEB1 reduces mitochondrial damage and increases mitochondrial respiratory activity; meanwhile, ZEB2 did the opposite. Treatment of fasting mice with Zeb1 -deficient myofibers with the antioxidant triterpenoid 1[2-cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl] trifluoro-ethylamide (CDDO-TFEA) completely reversed their altered phenotype to that observed in fasted control mice. These results set ZEB factors as potential therapeutic targets to modulate the adaptive antioxidant response in physiopathological conditions and diseases caused by redox imbalance.

Funder

Duchenne Parent Project

MEC | Agencia Estatal de Investigación

Government of Catalonia | Agència de Gestió d'Ajuts Universitaris i de Recerca

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3