Light cues induce protective anticipation of environmental water loss in terrestrial bacteria

Author:

Hatfield Bridget M.1,LaSarre Breah1ORCID,Liu Meiling2,Dong Haili1,Nettleton Dan2,Beattie Gwyn A.1ORCID

Affiliation:

1. Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011

2. Department of Statistics, Iowa State University, Ames, IA 50011

Abstract

The ecological significance of light perception in nonphotosynthetic bacteria remains largely elusive. In terrestrial environments, diurnal oscillations in light are often temporally coupled to other environmental changes, including increased temperature and evaporation. Here, we report that light functions as an anticipatory cue that triggers protective adaptations to tolerate a future rapid loss of environmental water. We demonstrate this photo-anticipatory stress tolerance in leaf-associated Pseudomonas syringae pv. syringae ( Pss ) and other plant- and soil-associated pseudomonads. We found that light influences the expression of 30% of the Pss genome, indicating that light is a global regulatory signal, and this signaling occurs almost entirely via a bacteriophytochrome photoreceptor that senses red, far-red, and blue wavelengths. Bacteriophytochrome-mediated light control disproportionally up-regulates water-stress adaptation functions and confers enhanced fitness when cells encounter light prior to water limitation. Given the rapid speed at which water can evaporate from leaf surfaces, such anticipatory activation of a protective response enhances fitness beyond that of a reactive stress response alone, with recurring diurnal wet–dry cycles likely further amplifying the fitness advantage over time. These findings demonstrate that nonphotosynthetic bacteria can use light as a cue to mount an adaptive anticipatory response against a physiologically unrelated but ecologically coupled stress.

Funder

USDA | National Institute of Food and Agriculture

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3