Gaming self-consistent field theory: Generative block polymer phase discovery

Author:

Chen Pengyu1ORCID,Dorfman Kevin D.1ORCID

Affiliation:

1. Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455

Abstract

Block polymers are an attractive platform for uncovering the factors that give rise to self-assembly in soft matter owing to their relatively simple thermodynamic description, as captured in self-consistent field theory (SCFT). SCFT historically has found great success explaining experimental data, allowing one to construct phase diagrams from a set of candidate phases, and there is now strong interest in deploying SCFT as a screening tool to guide experimental design. However, using SCFT for phase discovery leads to a conundrum: How does one discover a new morphology if the set of candidate phases needs to be specified in advance? This long-standing challenge was surmounted by training a deep convolutional generative adversarial network (GAN) with trajectories from converged SCFT solutions, and then deploying the GAN to generate input fields for subsequent SCFT calculations. The power of this approach is demonstrated for network phase formation in neat diblock copolymer melts via SCFT. A training set of only five networks produced 349 candidate phases spanning known and previously unexplored morphologies, including a chiral network. This computational pipeline, constructed here entirely from open-source codes, should find widespread application in block polymer phase discovery and other forms of soft matter.

Funder

NSF | Directorate for Mathematical and Physical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference59 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3