Quantifying common and distinct information in single-cell multimodal data with Tilted Canonical Correlation Analysis

Author:

Lin Kevin Z.1ORCID,Zhang Nancy R.1ORCID

Affiliation:

1. Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104

Abstract

Multimodal single-cell technologies profile multiple modalities for each cell simultaneously, enabling a more thorough characterization of cell populations. Existing dimension-reduction methods for multimodal data capture the “union of information,” producing a lower-dimensional embedding that combines the information across modalities. While these tools are useful, we focus on a fundamentally different task of separating and quantifying the information among cells that is shared between the two modalities as well as unique to only one modality. Hence, we develop Tilted Canonical Correlation Analysis (Tilted-CCA), a method that decomposes a paired multimodal dataset into three lower-dimensional embeddings—one embedding captures the “intersection of information,” representing the geometric relations among the cells that is common to both modalities, while the remaining two embeddings capture the “distinct information for a modality,” representing the modality-specific geometric relations. We analyze single-cell multimodal datasets sequencing RNA along surface antibodies (i.e., CITE-seq) as well as RNA alongside chromatin accessibility (i.e., 10x) for blood cells and developing neurons via Tilted-CCA. These analyses show that Tilted-CCA enables meaningful visualization and quantification of the cross-modal information. Finally, Tilted-CCA’s framework allows us to perform two specific downstream analyses. First, for single-cell datasets that simultaneously profile transcriptome and surface antibody markers, we show that Tilted-CCA helps design the target antibody panel to complement the transcriptome best. Second, for developmental single-cell datasets that simultaneously profile transcriptome and chromatin accessibility, we show that Tilted-CCA helps identify development-informative genes and distinguish between transient versus terminal cell types.

Funder

HHS | NIH | National Human Genome Research Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3