Ab initio generalized Langevin equation

Author:

Xie Pinchen1,Car Roberto123ORCID,E Weinan45ORCID

Affiliation:

1. Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544

2. Department of Chemistry and Princeton Materials Institute, Princeton University, Princeton, NJ 08544

3. Department of Physics, Princeton University, Princeton, NJ 08544

4. AI for Science Institute, Beijing 100080, China

5. Center for Machine Learning Research and School of Mathematical Sciences, Peking University, Beijing 100084, China

Abstract

We introduce a machine learning–based approach called ab initio generalized Langevin equation (AIGLE) to model the dynamics of slow collective variables (CVs) in materials and molecules. In this scheme, the parameters are learned from atomistic simulations based on ab initio quantum mechanical models. Force field, memory kernel, and noise generator are constructed in the context of the Mori–Zwanzig formalism, under the constraint of the fluctuation–dissipation theorem. Combined with deep potential molecular dynamics and electronic density functional theory, this approach opens the way to multiscale modeling in a variety of situations. Here, we demonstrate this capability with a study of two mesoscale processes in crystalline lead titanate, namely the field-driven dynamics of a planar ferroelectric domain wall, and the dynamics of an extensive lattice of coarse-grained electric dipoles. In the first case, AIGLE extends the reach of ab initio simulations to a regime of noise-driven motions not accessible to molecular dynamics. In the second case, AIGLE deals with an extensive set of CVs by adopting a local approximation for the memory kernel and retaining only short-range noise correlations. The scheme is computationally more efficient than molecular dynamics by several orders of magnitude and mimics the microscopic dynamics at low frequencies where it reproduces accurately the dominant far-infrared absorption frequency.

Funder

DOE | SC | Basic Energy Sciences

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Reference93 articles.

1. Coarse-Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back

2. N. Provatas, K. Elder, Phase-Field Methods in Materials Science and Engineering (John Wiley& Sons, 2011).

3. Coarse-Graining Methods for Computational Biology

4. Nonequilibrium Statistical Mechanics

5. L. D. Landau, E. M. Lifshitz, Statistical Physics (Elsevier, 2013), vol. 5.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3