A structurally precise mechanism links an epilepsy-associated KCNC2 potassium channel mutation to interneuron dysfunction

Author:

Clatot Jerome12,Currin Christopher B.3,Liang Qiansheng4ORCID,Pipatpolkai Tanadet5,Massey Shavonne L.126,Helbig Ingo1267,Delemotte Lucie5ORCID,Vogels Tim P.3ORCID,Covarrubias Manuel4,Goldberg Ethan M.1268ORCID

Affiliation:

1. Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104

2. The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104

3. The Institute of Science and Technology Austria, Klosterneuburg 3400, Austria

4. Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107

5. Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Solna SE-171 21, Sweden

6. The Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104

7. Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104

8. The Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104

Abstract

De novo heterozygous variants in KCNC2 encoding the voltage-gated potassium (K + ) channel subunit Kv3.2 are a recently described cause of developmental and epileptic encephalopathy (DEE). A de novo variant in KCNC2 c.374G > A (p.Cys125Tyr) was identified via exome sequencing in a patient with DEE. Relative to wild-type Kv3.2, Kv3.2-p.Cys125Tyr induces K + currents exhibiting a large hyperpolarizing shift in the voltage dependence of activation, accelerated activation, and delayed deactivation consistent with a relative stabilization of the open conformation, along with increased current density. Leveraging the cryogenic electron microscopy (cryo-EM) structure of Kv3.1, molecular dynamic simulations suggest that a strong π-π stacking interaction between the variant Tyr125 and Tyr156 in the α-6 helix of the T1 domain promotes a relative stabilization of the open conformation of the channel, which underlies the observed gain of function. A multicompartment computational model of a Kv3-expressing parvalbumin-positive cerebral cortex fast-spiking γ-aminobutyric acidergic (GABAergic) interneuron (PV-IN) demonstrates how the Kv3.2-Cys125Tyr variant impairs neuronal excitability and dysregulates inhibition in cerebral cortex circuits to explain the resulting epilepsy.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

EC | European Research Council

Swedish Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3