Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects

Author:

Chen Jingan1,Xu Yue2ORCID,Zhou Muye2,Xu Shufen2,Varley Andrew James2ORCID,Golubovic Alex2ORCID,Lu Rick Xing Ze2,Wang Kevin Chang2ORCID,Yeganeh Mina3,Vosoughi Daniel34ORCID,Li Bowen125ORCID

Affiliation:

1. Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada

2. Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada

3. Institute of Medical Science, University of Toronto, Toronto, ON M5G 1L7, Canada

4. Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada

5. Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada

Abstract

Ionizable lipid nanoparticles (LNPs) pivotal to the success of COVID-19 mRNA (messenger RNA) vaccines hold substantial promise for expanding the landscape of mRNA-based therapies. Nevertheless, the risk of mRNA delivery to off-target tissues highlights the necessity for LNPs with enhanced tissue selectivity. The intricate nature of biological systems and inadequate knowledge of lipid structure–activity relationships emphasize the significance of high-throughput methods to produce chemically diverse lipid libraries for mRNA delivery screening. Here, we introduce a streamlined approach for the rapid design and synthesis of combinatorial libraries of biodegradable ionizable lipids. This led to the identification of iso-A11B5C1, an ionizable lipid uniquely apt for muscle-specific mRNA delivery. It manifested high transfection efficiencies in muscle tissues, while significantly diminishing off-targeting in organs like the liver and spleen. Moreover, iso-A11B5C1 also exhibited reduced mRNA transfection potency in lymph nodes and antigen-presenting cells, prompting investigation into the influence of direct immune cell transfection via LNPs on mRNA vaccine effectiveness. In comparison with SM-102, while iso-A11B5C1’s limited immune transfection attenuated its ability to elicit humoral immunity, it remained highly effective in triggering cellular immune responses after intramuscular administration, which is further corroborated by its strong therapeutic performance as cancer vaccine in a melanoma model. Collectively, our study not only enriches the high-throughput toolkit for generating tissue-specific ionizable lipids but also encourages a reassessment of prevailing paradigms in mRNA vaccine design. This study encourages rethinking of mRNA vaccine design principles, suggesting that achieving high immune cell transfection might not be the sole criterion for developing effective mRNA vaccines.

Funder

Connaught Fund

J.P. Bickell Foundation

Canada Research Chairs

Gouvernement du Canada | Canadian Institutes of Health Research

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3