Functional aggregation of cell-free proteins enables fungal ice nucleation

Author:

Schwidetzky Ralph1,de Almeida Ribeiro Ingrid2ORCID,Bothen Nadine3,Backes Anna T.3ORCID,DeVries Arthur L.4,Bonn Mischa1ORCID,Fröhlich-Nowoisky Janine3,Molinero Valeria2ORCID,Meister Konrad15ORCID

Affiliation:

1. Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany

2. Department of Chemistry, The University of Utah, Salt Lake City, UT 84112

3. Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany

4. Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801

5. Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725

Abstract

Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above −10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above −5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus Fusarium acuminatum . We find ice-binding and ice-shaping activity of Fusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits. Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.

Funder

NSF | National Science Board

DOD | Multidisciplinary University Research Initiative

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3