Near-infrared voltage-sensitive dyes based on chromene donor

Author:

Yan Ping1ORCID,Acker Corey D.1,Biasci Valentina2,Judge Giuliana1ORCID,Monroe Alexa1,Sacconi Leonardo34ORCID,Loew Leslie M.1ORCID

Affiliation:

1. Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030

2. European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy

3. Institute of Clinical Physiology, National Research Council, Florence 50139, Italy

4. Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany

Abstract

Voltage-sensitive dyes (VSDs) are used to image electrical activity in cells and tissues with submillisecond time resolution. Most of these fast sensors are constructed from push–pull chromophores whose fluorescence spectra are modulated by the electric field across the cell membrane. It was found that the substitution of naphthalene with chromene produces a 60 to 80 nm red-shift in absorption and emission spectra while maintaining fluorescence quantum efficiency and voltage sensitivity. One dye was applied to ex vivo murine heart with excitation at 730 nm, by far the longest wavelength reported in voltage imaging. This VSD resolves cardiac action potentials in single trials with 12% ΔF/F per action potential. The well-separated excitation spectra between these long-wavelength VSDs and channelrhodopsin (ChR2) enabled monitoring of action potential propagation in ChR2 hearts without any perturbation of electrical dynamics. Importantly, by employing spatially localized optogenetic manipulation, action potential dynamics can be assessed in an all-optical fashion with no artifact related to optical cross-talk between the reporter and actuator. These new environmentally sensitive chromene-based chromophores are also likely to have applications outside voltage imaging.

Funder

HHS | National Institutes of Health

Uconn | College of Liberal Arts and Sciences, University of Connecticut

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3