Underexcitation prevents crystallization of granular assemblies subjected to high-frequency vibration

Author:

AlMahri Sara12ORCID,Grega Ivan1ORCID,Shaikeea Angkur J. D.1,Wadley Haydn N. G.3,Deshpande Vikram S.1ORCID

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom

2. Advanced Materials Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates

3. Department of Material Science and Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904

Abstract

Crystallization of dry particle assemblies via imposed vibrations is a scalable route to assemble micro/macro crystals. It is well understood that there exists an optimal frequency to maximize crystallization with broad acceptance that this optimal frequency emerges because high-frequency vibration results in overexcitation of the assembly. Using measurements that include interrupted X-ray computed tomography and high-speed photography combined with discrete-element simulations we show that, rather counterintuitively, high-frequency vibration underexcites the assembly. The large accelerations imposed by high-frequency vibrations create a fluidized boundary layer that prevents momentum transfer into the bulk of the granular assembly. This results in particle underexcitation which inhibits the rearrangements required for crystallization. This clear understanding of the mechanisms has allowed the development of a simple concept to inhibit fluidization which thereby allows crystallization under high-frequency vibrations.

Funder

DOD | USA | CCDC | Army Research Office

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3