Dominant heterocyclic composition of dissolved organic nitrogen in the ocean: A new paradigm for cycling and persistence

Author:

Broek Taylor A. B.12ORCID,McCarthy Matthew D.1,Ianiri Hope L.1ORCID,Vaughn John S.3,Mason Harris E.3ORCID,Knapp Angela N.4ORCID

Affiliation:

1. Ocean Sciences Department, University of California, Santa Cruz, CA 95064

2. Atmospheric, Earth, and Energy Division, Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550

3. Nuclear and Chemical Sciences Division, Center for Nuclear Magnetic Resonance Spectroscopy, Lawrence Livermore National Laboratory, Livermore, CA 94550

4. Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32304

Abstract

Marine dissolved organic nitrogen (DON) is one of the planet’s largest reservoirs of fixed N, which persists even in the N-limited oligotrophic surface ocean. The vast majority of the ocean’s total DON reservoir is refractory (RDON), primarily composed of low molecular weight (LMW) compounds in the subsurface and deep sea. However, the composition of this major N pool, as well as the reasons for its accumulation and persistence, are not understood. Past characterization of the analytically more tractable, but quantitatively minor, high molecular weight (HMW) DON fraction revealed a functionally simple amide-dominated composition. While extensive work in the past two decades has revealed enormous complexity and structural diversity in LMW dissolved organic carbon, no efforts have specifically targeted LMW nitrogenous molecules. Here, we report the first coupled isotopic and solid-state NMR structural analysis of LMW DON isolated throughout the water column in two ocean basins. Together these results provide a first view into the composition, potential sources, and cycling of this dominant portion of marine DON. Our data indicate that RDON is dominated by 15 N-depleted heterocyclic-N structures, entirely distinct from previously characterized HMW material. This fundamentally new view of marine DON composition suggests an important structural control for RDON accumulation and persistence in the ocean. The mechanisms of production, cycling, and removal of these heterocyclic-N-containing compounds now represents a central challenge in our understanding of the ocean’s DON reservoir.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3