Precise coordination of high-loading Fe single atoms with sulfur boosts selective generation of nonradicals

Author:

Jiang Xunheng1,Zhou Binghui2,Yang Weijie2,Chen Jiayi3,Miao Chen1,Guo Zhongyuan1,Li Hao4ORCID,Hou Yang3,Xu Xinhua1,Zhu Lizhong15,Lin Daohui15ORCID,Xu Jiang15ORCID

Affiliation:

1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

2. Department of Power Engineering, North China Electric Power University, Baoding 071003, China

3. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China

4. Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

5. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China

Abstract

Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride–supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron–oxo species (Fe IV =O) along with singlet oxygen ( 1 O 2 ), significantly increasing the 1 O 2 yield, PMS utilization, and p -chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d -band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1 O 2 and Fe IV =O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.

Funder

MOST | National Key Research and Development Program of China

MOST | National Natural Science Foundation of China

China Postdoctoral Foundation Project | National Postdoctoral Program for Innovative Talents

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3