Feedback regulation of ubiquitination and phase separation of HECT E3 ligases

Author:

Li Jingyu1ORCID,Zhu Kang1ORCID,Gu Aihong1,Zhang Yiqing1ORCID,Huang Shijing1ORCID,Hu Ronggui2,Hu Weiguo3ORCID,Lei Qun-Ying3ORCID,Wen Wenyu1ORCID

Affiliation:

1. Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China

2. State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200032, China

3. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China

Abstract

Lipid homeostasis is essential for normal cellular functions and dysregulation of lipid metabolism is highly correlated with human diseases including neurodegenerative diseases. In the ubiquitin-dependent autophagic degradation pathway, Troyer syndrome–related protein Spartin activates and recruits HECT-type E3 Itch to lipid droplets (LDs) to regulate their turnover. In this study, we find that Spartin promotes the formation of Itch condensates independent of LDs. Spartin activates Itch through its multiple PPAY-motif platform generated by self-oligomerization, which targets the WW12 domains of Itch and releases the autoinhibition of the ligase. Spartin-induced activation and subsequent autoubiquitination of Itch lead to liquid–liquid phase separation (LLPS) of the poly-, but not oligo-, ubiquitinated Itch together with Spartin and E2 both in vitro and in living cells. LLPS-mediated condensation of the reaction components further accelerates the generation of polyubiquitin chains, thus forming a positive feedback loop. Such Itch–Spartin condensates actively promote the autophagy-dependent turnover of LDs. Moreover, we show that the catalytic HECT domain of Itch is sufficient to interact and phase separate with poly-, but not oligo-ubiquitin chains. HECT domains from other HECT E3 ligases also exhibit LLPS-mediated the promotion of ligase activity. Therefore, LLPS and ubiquitination are mutually interdependent and LLPS promotes the ligase activity of the HECT family E3 ligases.

Funder

Ministry of Science and Technology of the People's Republic of China

MOST | National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3