OASIS: An interpretable, finite-sample valid alternative to Pearson’s X 2 for scientific discovery

Author:

Baharav Tavor Z.12ORCID,Tse David3,Salzman Julia456

Affiliation:

1. Eric and Wendy Schmidt Center, Broad Institute, Cambridge, MA 02142

2. Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115

3. Department of Electrical Engineering, Stanford University, Stanford, CA 94305

4. Department of Biomedical Data Science, Stanford University, Stanford, CA 94305

5. Department of Biochemistry, Stanford University, Stanford, CA 94305

6. Department of Statistics (by courtesy), Stanford University, Stanford, CA 94305

Abstract

Contingency tables, data represented as counts matrices, are ubiquitous across quantitative research and data-science applications. Existing statistical tests are insufficient however, as none are simultaneously computationally efficient and statistically valid for a finite number of observations. In this work, motivated by a recent application in reference-free genomic inference [K. Chaung et al ., Cell 186 , 5440–5456 (2023)], we develop Optimized Adaptive Statistic for Inferring Structure (OASIS), a family of statistical tests for contingency tables. OASIS constructs a test statistic which is linear in the normalized data matrix, providing closed-form P -value bounds through classical concentration inequalities. In the process, OASIS provides a decomposition of the table, lending interpretability to its rejection of the null. We derive the asymptotic distribution of the OASIS test statistic, showing that these finite-sample bounds correctly characterize the test statistic’s P -value up to a variance term. Experiments on genomic sequencing data highlight the power and interpretability of OASIS. Using OASIS, we develop a method that can detect SARS-CoV-2 and Mycobacterium tuberculosis strains de novo, which existing approaches cannot achieve. We demonstrate in simulations that OASIS is robust to overdispersion, a common feature in genomic data like single-cell RNA sequencing, where under accepted noise models OASIS provides good control of the false discovery rate, while Pearson’s X 2 consistently rejects the null. Additionally, we show in simulations that OASIS is more powerful than Pearson’s X 2 in certain regimes, including for some important two group alternatives, which we corroborate with approximate power calculations.

Funder

HHS | NIH | National Institute of General Medical Sciences

National Science Foundation

Stanford University

Chan Zuckerberg Initiative

Broad Institute

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3