Pattern selection by material aging: Modeling chemical gardens in two and three dimensions

Author:

Batista Bruno C.1,Morris Amari Z.1,Steinbock Oliver1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390

Abstract

Chemical gardens are complex, often macroscopic, structures formed by precipitation reactions. Their thin walls compartmentalize the system and adjust in size and shape if the volume of the interior reactant solution is increased by osmosis or active injection. Spatial confinement to a thin layer is known to result in various patterns including self-extending filaments and flower-like patterns organized around a continuous, expanding front. Here, we describe a cellular automaton model for this type of self-organization, in which each lattice site is occupied by one of the two reactants or the precipitate. Reactant injection causes the random replacement of precipitate and generates an expanding near-circular precipitate front. If this process includes an age bias favoring the replacement of fresh precipitate, thin-walled filaments arise and grow—like in the experiments—at the leading tip. In addition, the inclusion of a buoyancy effect allows the model to capture various branched and unbranched chemical garden shapes in two and three dimensions. Our results provide a model of chemical garden structures and highlight the importance of temporal changes in the self-healing membrane material.

Funder

NASA | NASA Headquarters

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3