A bacterial-like Pictet–Spenglerase drives the evolution of fungi to produce β-carboline glycosides together with separate genes

Author:

Li Xin-Lin12ORCID,Sun Yanlei12,Yin Ying1,Zhan Shuai1ORCID,Wang Chengshu123ORCID

Affiliation:

1. Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China

2. CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China

Abstract

Diverse β-carboline (βC) alkaloids are produced by microbes, plants, and animals with myriad bioactivities and drug potentials. However, the biosynthetic mechanism of βCs remains largely elusive, especially regarding the hydroxyl and glucosyl modifications of βCs. Here, we report the presence of the bacterial-like Pictet–Spenglerase gene Fcs1 in the entomopathogenic Beauveria fungi that can catalyze the biosynthesis of the βC skeleton. The overexpression of Fcs1 in Beauveria bassiana led to the identification of six βC methyl glycosides, termed bassicarbosides (BCSs) A–F. We verified that the cytochrome P450 (CYP) genes adjacent to Fcs1 cannot oxidize βCs. Alternatively, the separated CYP684B2 family gene Fcs2 was identified to catalyze βC hydroxylation together with its cofactor gene Fcs3 . The functional homologue of Fcs2 is only present in the Fcs1- containing fungi and highly similar to the Fcs1- connected yet nonfunctional CYP. Both evolved quicker than those from fungi without Fcs1 homologues. Finally, the paired methyl/glucosyl transferase genes were verified to mediate the production of BCSs from hydroxy-βCs. All these functionally verified genes are located on different chromosomes of Beauveria , which is in contrast to the typical content-clustered feature of fungal biosynthetic gene clusters (BGCs). We also found that the production of BCSs selectively contributed to fungal infection of different insect species. Our findings shed light on the biosynthetic mechanism of βC glycosides, including the identification of a βC hydroxylase. The results of this study also propose an evolving process of fungal BGC formation following the horizontal transfer of a bacterial gene to fungi.

Funder

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3