MM optimization: Proximal distance algorithms, path following, and trust regions

Author:

Landeros Alfonso1,Xu Jason2,Lange Kenneth134

Affiliation:

1. Department of Computational Medicine, University of California, Los Angeles, CA 90095

2. Department of Statistical Science, Duke University, Durham, NC 27708

3. Department of Human Genetics, University of California, Los Angeles, CA 90095

4. Department of Statistics, University of California, Los Angeles, CA 90095

Abstract

We briefly review the majorization–minimization (MM) principle and elaborate on the closely related notion of proximal distance algorithms, a generic approach for solving constrained optimization problems via quadratic penalties. We illustrate how the MM and proximal distance principles apply to a variety of problems from statistics, finance, and nonlinear optimization. Drawing from our selected examples, we also sketch a few ideas pertinent to the acceleration of MM algorithms: a) structuring updates around efficient matrix decompositions, b) path following in proximal distance iteration, and c) cubic majorization and its connections to trust region methods. These ideas are put to the test on several numerical examples, but for the sake of brevity, we omit detailed comparisons to competing methods. The current article, which is a mix of review and current contributions, celebrates the MM principle as a powerful framework for designing optimization algorithms and reinterpreting existing ones.

Funder

HHS | U.S. Public Health Service

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3