Analysis of the complex between MBD2 and the histone deacetylase core of NuRD reveals key interactions critical for gene silencing

Author:

Leighton Gage O.1ORCID,Shang Shengzhe2ORCID,Hageman Sean1,Ginder Gordon D.2345ORCID,Williams David C.1ORCID

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599

2. Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298

3. Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298

4. Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298

5. Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298

Abstract

The nucleosome remodeling and deacetylase (NuRD) complex modifies nucleosome positioning and chromatin compaction to regulate gene expression. The methyl-CpG-binding domain proteins 2 and 3 (MBD2 and MBD3) play a critical role in complex formation; however, the molecular details of how they interact with other NuRD components have yet to be fully elucidated. We previously showed that an intrinsically disordered region (IDR) of MBD2 is necessary and sufficient to bind to the histone deacetylase core of NuRD. Building on that work, we have measured the inherent structural propensity of the MBD2-IDR using solvent and site-specific paramagnetic relaxation enhancement measurements. We then used the AlphaFold2 machine learning software to generate a model of the complex between MBD2 and the histone deacetylase core of NuRD. This model is remarkably consistent with our previous studies, including the current paramagnetic relaxation enhancement data. The latter suggests that the free MBD2-IDR samples conformations similar to the bound structure. We tested this model of the complex extensively by mutating key contact residues and measuring binding using an intracellular bioluminescent resonance energy transfer assay. Furthermore, we identified protein contacts that, when mutated, disrupted gene silencing by NuRD in a cell model of fetal hemoglobin regulation. Hence, this work provides insights into the formation of NuRD and highlights critical binding pockets that may be targeted to block gene silencing for therapy. Importantly, we show that AlphaFold2 can generate a credible model of a large complex that involves an IDR that folds upon binding.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3